A Step-by-Step Guide to Changing the Timing Belt on the 240 Volvo non-B230 Engine

Frederick Su

Parts needed:
- timing belt
- fan belts (recommended)
 Non-AC: alternator
 waterpump
 power steering
 AC: add compressor
- tensioner roller bearing (optional)

Tools needed:
- 10-mm thin box end wrench
- 10-mm open end wrench
- 8-mm wrench
- ¾”-drive socket wrench with
 • 10-mm socket
 • 12-mm socket
- long handled, ½”-drive socket wrench with
 • 22-mm socket
- waterpump pliers (optional)
- 3/8”-drive socket wrench with
 • 17-mm socket
- 2 small spring clamps
- Phillips screwdriver (maybe)
- nail
- electric light
- safety glasses

1982 244 Volvo

A bytewrite® LLC publication
Preface

We were driving our 1979 Volvo 245 in the North Cascades of Washington state, descending from Washington Pass (5,477') into Winthrop.

“Gee, this car is doing pretty well. No problems for over a year,” I told my wife. Not five minutes later, the car died. The timing belt had broken.

To make a long story short, the closest Volvo dealer was over a hundred miles away. The next weekend, we went back and I put in the new timing belt myself (for the first time) in about 4 hours.

Volvo recommends changing the timing belt every 50,000 miles. Needless to say, we are pretty religious about this now.

I’ve changed a number of timing belts since then, but it seems that I always forget some fine point that the Haynes manual skipped over. Hence, this booklet. It is a step-by-step guide to changing the timing belt on the 240 series Volvo. It has plenty of photos to guide you through the process.

“How much does it cost to replace a timing belt for a 740 Volvo?” I asked.
“Two and a half hours,” the service manager replied.
“How much do you charge per hour?”
Number crunching in background. “The total job is $150.”
“What about replacing the belt for a 240 Volvo? It’s simpler, isn’t it?”
“No. Same engine. Still $150.”

Well, the guts of the engine may be the same, but the peripherals are different. It is easier to change the timing belt on the 240 Volvo rather than the 740 because you don’t need to remove the crankshaft nut as part of the timing belt replacement.

*Replacing the oil seals on the 240 is another matter. You’d have to remove the crankshaft nut to replace the crankshaft oil seal, which makes it much more difficult when you don’t have the proper tools. And, yes, it costs more for a professional mechanic to do this task. Most people will go ahead and replace the oil seals because it’s convenient to do so. This guide does not cover replacing the oil seals.

Caveat and liability: bytewrite LLC cannot be liable for any injuries or mechanical problems arising from use of this booklet. While changing just the timing belt on the 240 Volvo is an eminently doable procedure by any weekend mechanic, it is recognized that some people have trouble using a screwdriver and wrench.

© 1998-2008 by Frederick Su. All rights reserved.
A bytewrite® LLC publication
P.O. Box 2635, Bellingham, WA 98227
e-mail: fred@bytewrite.com
How do you know it’s a broken timing belt?

If the engine does not start: Remove the oil filler cap and look inside the valve cover while an assistant hits ignition “Start.” If the overhead camshaft does not rotate, then most likely it is a broken timing belt.

Simplicity

Volvos have always been, for me, sturdy, dependable work horses of transportation. When they broke down, they were reasonably simple to work on.

The 4-cylinder engine doesn’t look like a jungle of wires and tubes. There’s room to squeeze your hand in among the different engine parts and wiggle your fingers, which is really important for the do-it-yourselfer. The oil filter is easily accessible. So are the alternator, starter motor, distributor (mostly), and ignition coil. In some vehicles (a Japanese model), a professional mechanic once told me that it took him 3 hours just to access the starter motor!

And, importantly, in the not too distant past, the engines were non-interference engines.

Non-Interference

The B20, B21, B23, and B230 engines are non-interference engines, meaning that the camshaft can be rotated independently of the crankshaft and no damage will result to the engine. That is, if the timing belt breaks, the valves will not hit the pistons; the engine will simply stop.

On the other hand, the B234 16-valve engines and any of the other Volvo multivalve engines (the 5-cylinder engines of the 850 and 70 series and the 6-cylinder in the 900 series) are interference engines. Loss of the timing belt in these engines will result in severe or fatal engine damage.

Acknowledgment

I would like to thank Steve Seekins, Technical Editor of Rolling, The Magazine of the Volvo Club of America, for his help in answering some technical questions and for reviewing this booklet. I would also like to thank Scott Hart, Volvo Division Leader, IPD, for his technical suggestions.
A Step-by-Step Guide to Changing the Timing Belt on the 240 Volvo non-B230 Engine

A two wrench job: normal timing belt replacement, eminently doable by a backyard mechanic. Time ~3-4 hours.

A two and 1/2 wrench job: (1) replacing the tensioner roller of Figure 20. A bit tricky. Replace every other time you do the timing belt. (2) Air conditioning (AC). A little bit more involved because of shims and a split crankshaft pulley.

A three wrench job: replacing the front oil seals of the overhead camshaft, auxiliary shaft, and crankshaft when replacing the timing belt. Volvo recommends changing the oil seals every other time you do the timing belt. If the bottom or sides of the timing belt cover are oily, then most likely you’ve got a bad oil seal. Replacing oil seals can easily add another 4-6 hours to the project because most people don’t have the specialized Volvo tools. If only the camshaft oil seals leak, those are easily replaced. The crankshaft oil seal, on the other hand, is more involved because you have to remove the crankshaft pulley nut.

Instructions for replacing oil seals not included in this guide.

Note:
i) Please read booklet beforehand.
ii) Non AC*. I recommend replacing the fan belts at the same time you replace the timing belt. This is a straightforward job.
iii) AC. Check tension of fan belt midway between AC compressor and crankshaft pulley. Belt should give $\frac{3}{16}$" - $\frac{3}{8}$” (5-10 mm) when pressed with thumb. Note the tension.

Overhead camshaft engines
1. Put car in neutral (the crankshaft will be easier to turn). Set handbrake. Block wheels.

Remove the 4, 10-mm nuts that hold the cooling fan/clutch assembly to the waterpump pulley hub (Figure 1). Use a thin box-end wrench for initial loosening

*AC = air conditioning.
(and final tightening), as the nuts are easily rounded. An open-end wrench is fine otherwise. (Sometimes a stud comes off. Use Loctite, medium strength, on the waterpump-pulley-side threads of any loosened stud when reassembling.) Pull fan assembly out.

2. Remove the 2, 8-mm nuts at top of fan shroud (Figure 2). These could be Phillips screws. Lift shroud out. Front of engine looks like Figure 3.

3. Remove the timing belt cover bolts. The top two 10-mm bolts are the same length, 1 ¾” (Figure 4). The left bottom bolt...
Figure 5. The long 10-mm bolt (tip of screwdriver—arrow) on the middle left of timing belt cover.

(Figure 5) has a 10-mm head and is 2 ¾” long. The bottom right bolt (Figure 6) has a 12-mm head and is 2 3/16” long.

For ease of installation, label bolts in some manner. One way: set bolts aside in order; once timing belt cover is off, insert appropriate bolt into its hole in the cover and tape over it.

4. Slip waterpump hub and fan belts off (Figure 7). Hang the two belts out of the way per Figure 12 or Figure 23.

5. Pull timing belt cover off.

Note that in some years, the timing belt cover is in two pieces. For two-piece covers, the bottom half can only be removed when the crankshaft pulley is removed (see Step 7).
6. Use a 22-mm socket on the crankshaft pulley nut (Figure 8) to turn the crankshaft until the timing marks A and B are aligned as shown in Figure 9*.

(a) The notch on the overhead camshaft pulley aligns with the notch in the cam cover (Figure 10).

*The engine is at piston #1, top dead center.
(b) The white dot on the auxiliary shaft pulley is at the 3:00 o'clock position. [Figure 11—there may or may not be a corresponding mark on the rear cover. Don’t worry, we will be aligning to the new belt anyway (Figure 22)]

(c) Don’t worry about alignment C of Figure 9 just yet. You’ll have to remove the crankshaft pulleys first (next step).

7. AC: Before removing the crankshaft pulley bolts, check and note the tension of the AC belt. Is it just right, too loose, or too tight? Proper tension is $\frac{3}{16}"$-$\frac{3}{8}"$ or 5-10 mm of give on belt when pressed with thumb midway between compressor and crankshaft.

Remove the 6, 10-mm bolts (or 2 nuts, 4 bolts) on the crankshaft pulleys (Figure 12) and slide the
two pulleys off the raised spline (Figure 13) of the crankshaft pulley boss.

AC: The tension for the AC compressor-crankshaft pulley belt is maintained by shims. When disassembling the crankshaft pulleys, note the number of working shims between the two halves of the outer crankshaft pulley. Extra shims are on the faceplate of the crankshaft pulley. More shims inserted between the halves dictate a looser belt (the belt rides lower in the groove); fewer shims mean a tighter belt (because the belt rides higher in the groove).

Whenreassembling, make sure the notches in the crankshaft pulleys align with the raised spline.

8. The front of the engine looks like Figure 14.
9. **Figure 15** shows the outer and inner crankshaft pulleys, left to right, respectively.

10. As shown in **Figure 16**, the notch (deep squarish cut) on the **crankshaft pulley boss** and the notches (small u shape) on the **crankshaft sprocket front and rear guide plates** turn together and are at about the 11:30 position, aligned roughly with the lip (that straight edge intersecting the circle of **Figure 16**) of the timing belt guard. The notches are aligned precisely to the back 4-mm-long ridge of the crank seal housing on front of engine block (**Figure 17**).
11. Loosen the 17-mm nut holding the belt tensioner spring (Figure 18). Do not remove.

12. With the belt tensioner nut loose, to remove the old belt, pull or push on the belt at A (Figure 19), then insert a restraining pin (Figure 20) or nail to keep spring compressed. Slide old belt off. (Sometimes it helps to use a large waterpump pliers to squeeze the spring and insert a pin.)

Check tensioner roller to see that it rolls freely. Check surface for damage; it should be smooth. If damaged, replace it. If you have more than 135,000 miles on your Volvo, replace it. Also replace every other time you change the timing belt. [It’s easy to get the roller off. It is much trickier installing a new one, because you have to compress the spring through the spring guide hole of the roller frame. (Use eye protection!) Some folks align the spring, guide hole, and roller frame in a vise—tightening the vise to compress the spring—and then insert a pin to hold the spring in place. I could never get this to work. I just put the whole thing on the car and used a waterpump pliers to squeeze the spring, aligning it into the hole at the same time. Not easy! Use Figure 20 as reference.]

13. Put some solvent on a rag and clean area back of the crankshaft rear sprocket guide plate (circle, Figure 16) so that you can see the 4-mm-long ridge (Figure 17). This is the alignment mark C of Figure 9! The u-shaped notch of the crankshaft rear sprocket guide plate aligns to this ridge.
14. **Most important step!** Slip the new belt on with the first single line mark of the new belt aligned on the camshaft notch of Figure 10. Use a spring clamp to hold the belt onto the overhead camshaft pulley (Figure 21). Slide the belt over the tensioner roller and under the crankshaft pulley boss. Make sure there is no play on the belt between the camshaft and crankshaft. Grab the new belt at A, Figure 19, and pull up on it to work it over the auxiliary shaft pulley. Make sure the second single line mark aligns to the dot on the auxiliary shaft pulley per Figure 11. Double check that the precise alignment of Figure 17 still holds. If it doesn’t, slip belt off at the auxiliary shaft pulley. This time, move the crankshaft pulley boss clockwise a notch or two (while adjusting belt) so that when you pull up on the timing belt to fit it over the auxiliary shaft pulley, the u-shaped notch of the crankshaft rear sprocket plate will move counterclockwise to align with the 4-mm-long ridge. *Fuss with it until you get it right!*

15. With belt on, double check that you have alignment at points A, B, and C of Figure 9 or Figure 22:
first single line mark of the new belt is aligned to the notch on the overhead camshaft pulley (Figure 10),

- the second single line mark of new belt is aligned to the dot on the auxiliary shaft pulley (Figure 11),

- and the u-shaped notch on the crankshaft sprocket rear guide plate is aligned to the 4-mm-long ridge on the crank seal housing (Figure 17).

This is the 3-point alignment of Figures 9 and 22. Being off by one notch can greatly affect your car’s performance. Double check now or do double work later!

16. Once all three points are aligned, pull nail of Figure 20 to let the tension spring loose. Make sure the tensioner nut is loose. Use the 22-mm socket wrench to turn the crankshaft clockwise (as seen from the front of the engine) one 360-degree crankshaft rotation to tighten the belt. Then, tighten the tensioner nut.

17. Check. Slide two loose belts of Figure 23 over steering assist or AC compressor and away from any moving parts. Keep loose clothing, long hair, and body parts away from moving parts! Start and run engine for 15 seconds, then stop. Re-examine alignment marks of Figure 9 by rotating the crankshaft per Figure 8. Note that it will be almost impossible to line up the belt marks per Figure 22, but the pulley alignment marks per Figure 9 should be easy to accomplish. Verify this. If not aligned, repeat Step 14. If good, your check is done. Start reassembly.
Reassembly

18. Reassembly is the reverse of disassembly and is, mostly, straightforward.

19. For two-piece timing belt covers, install the lower cover now.

Non AC (Non Air-Conditioned):

20. Clasp the two crankshaft pulleys together, aligning holes and notches, making sure the shallow one is on the bottom (Figure 15).

21. Before sliding the crankshaft pulleys onto the crankshaft pulley boss, thread the outermost fan belt (A, Figure 23) through the two inner fan belts and hook one end of belt A to the power assist steering pulley and slip other end onto the outermost crankshaft pulley. The two inner fan belts should hang, as shown.

22. Install both crankshaft pulleys with the inner pulley keyed onto the raised spline of the crankshaft pulley boss. (Note that the spline is too shallow to lock securely onto the outer pulley.) Rock the pulleys to make sure they don’t slip on the pulley boss, i.e., they’re locked to the spline. Insert a bolt. (This step may be a little tricky because of the tension of the fan belt. If you’re having too much difficulty, loosen the tension bolt for the power assist pulley.) Insert remaining bolts opposite each other; finger tighten. Tighten each fastener diagonally from the last. Use short handled (4”-5” long), ¼”-drive socket wrench. Don’t overtighten and strip the bolt or nut. Tighten to 5-6 ft-lbs or same torque you felt when disassembling

AC (Air-Conditioned):

23. If the original AC belt had the proper tension, $\frac{3}{16}$”- $\frac{3}{8}$” (5-10 mm), use the same number of shims between the halves of the outer crankshaft pulley when re-installing. If the old belt seemed loose, take one shim out from between the halves. If the original AC belt seemed too tight, insert an extra shim between the halves. One shim alters the belt tension about $\frac{3}{16}$” or 5 mm. Left-over shims go on the faceplate of the outer crankshaft pulley.

Be sure to rotate the crankshaft during the process of installing and tightening the 6 pulley fasteners. (Don’t forget to slip the 2 waterpump/alternator belts on first per Figure 23.) If you simply tighten the bolts with the belt deep in the “V” of the pulley, the belt will become sandwiched between the two
halves. The fasteners will be tight, but once the engine is started, they will become loose. Slowly tighten the bolts (in diagonal fashion) a few turns and then turn the crankshaft a half revolution (using the 22-mm socket wrench of Figure 8) to free the belt. Repeat this process until the fasteners are completely seated and tight (5-6 ft-lbs).

24. Check. Next, make sure the other belts are out of the way of any turning parts (See Caution, Figure 23). Start the engine for a moment. Then shut it off and doublecheck the fasteners and belt tension. The belt should give about $\frac{3}{16}” - \frac{3}{8}”$ (5-10 mm) when pressed midway between the AC compressor and crankshaft pulley. It’s a trial and error process.

Finish Assembly (both):

25. Finish assembling the timing belt cover.

26. Once the timing belt cover is on, slide the waterpump pulley onto the studs and slip the other two belts on as shown in Figure 24. These two belts go over the waterpump pulley, alternator, and inner crankshaft pulley, and should slip on easily. They will tighten when the fan/clutch assembly is installed. (In the unlikely event the belts are too tight and you’re having trouble, you must loosen the tension bolt for each specific pulley and adjust.)

27. Install fan shroud and cooling fan/clutch assembly. Don’t overtighten and don’t round off the 10-mm nuts when installing the fan.

28. Belts should give about $\frac{3}{16}” - \frac{3}{8}”$ (5-10 mm) when pressed midway between the waterpump and alternator. Loose belts squeal or otherwise make noise — continuously or intermittently. Tighten, if needed.

You’re done!
Epilog

After 500 miles, pry the rubber tensioner plug (as shown in Figure 4) out from the timing belt cover and loosen the 17-mm tensioner nut. With car in neutral, as shown in Figure 8, use the 22-mm socket to turn the crankshaft clockwise (as seen from front of engine) one 360-degree crankshaft rotation to tighten the belt. (No, you don’t have to be at top dead center, as some manuals claim.) Tighten the tensioner nut. (Be careful when reinserting the rubber plug! If it falls into the hole, you’ll have to disassemble almost everything to retrieve it.) You’re all done.

Note: If your car runs great, you did the job correctly. If you have no power and acceleration, you’re probably off by a notch or two on aligning the timing belt, most likely in aligning the small u-shaped notch of the crankshaft rear guide plate to the 4-mm-long vertical line on the crank seal housing (Figure 17).

Congratulations!
You’ve done it. Pat yourself on the back! Keep this booklet handy. 50,000 miles and the next timing belt change rolls around before you know it.

About the Author
If this booklet helped and saved you money, please send a $6 check, payable to byte-write, to

byte-write LLC
P.O. Box 2635
Bellingham, WA 98227 USA

Also consider ordering a copy of *An American Sin* (regularly $15, info at www.bytewrite.com) from your local bookstore. Or, order an autographed copy directly from the publisher and save 20%, plus get free shipping in U.S.! You’ll be supporting a very small press and keep information flowing for do-it-yourselfers. Thank you!

Name: ____________________________

Address: __
__
__

Email: ______________________________________

Date: ______________________________

What do you want written in your autographed copy of *An American Sin*?

__

__

__

__

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ A Step-by-Step Guide to Changing the Timing Belt on the 240 Volvo non-B230 Engine (already downloaded)</td>
<td>$6.00 U.S.</td>
<td>1</td>
<td>$6.00</td>
</tr>
<tr>
<td>☐ An American Sin (regular price $15; with above paid download, it’s 20% off)</td>
<td>$12.00 U.S.</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Shipping in U.S.: Free

Shipping to Canada: $4.66

(outside U.S. and Canada, please email fred@bytewrite.com for shipping cost)

Publisher pays WA State Sales Tax.

Make check out to byte-write.

Grand Total: ______

Thank you!